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Abstract. We present an extensive Quantum Monte Carlo study of the magnetic properties of the mixed-
spin quantum systems R2BaNiO5 (R= magnetic rare earth) which show coexistence of 3-dimensional
magnetic long-range order with 1-dimensional quantum gap excitations. We discuss the validity of the
performed simulations in the critical region and show the excellent agreement with experimental results.
We emphasize the importance of quantum fluctuations contained in our study which is absent in previous
mean-field-like treatments.

PACS. 75.10.Jm Quantized spin models – 75.25.+z Spin arrangements in magnetically ordered materials
(including neutron and spin-polarized electron studies, synchrotron-source X-ray scattering, etc.) –
75.50.Ee Antiferromagnetics

1 Introduction

The competition of different orders in mixed-species sys-
tems is a subject of actual interest, not only in con-
densed matter physics where for instance mixed-spin sys-
tems have been studied intensively in the last years [1] but
also in other research areas like the physics of ultra-cold
atomic and molecular gases where Fermi-Bose mixtures
are being investigated [2]. The fascination in the mixed-
species systems roots in the coexistence of different orders
and different types of excitations what leads to interesting
competing effects.

Here we want to concentrate on the magnetic behav-
ior of a class of mixed-spin quantum systems, R2BaNiO5

(R=magnetic rare earth) which show coexistence of 3-
dimensional (3D) magnetic long-range order with 1-di-
mensional (1D) quantum gap excitations [3]. In a previ-
ous publication [4] we proposed a microscopic model in
order to describe this coexistence of classical with quan-
tum features in Nd2BaNiO5 which we evaluated with the
Quantum Monte Carlo (QMC) method. In the present ar-
ticle we extend our previous work to the region of critical
behavior of the whole family R2BaNiO5 and present a
detailed analysis of the QMC simulations which was not
included in [4].

The R2BaNiO5 systems have two types of spin car-
riers i.e. S = 1 Ni2+ ions which form antiferromagnetic
chains running along the a axis of the crystal structure
and s = 1

2 R3+ ions (R= rare-earth), positioned between

a e-mail: jvalvare@umich.edu

the chains. While perfect isolated S = 1 chains will behave
as a Haldane system [5] with no long-range order even at
T = 0 and a gap in the magnetic excitation spectrum,
long-range ordering occurs in R2BaNiO5 at low temper-
atures induced by the magnetic s = 1

2 R3+ ions. Inter-
estingly, the semi-classical 3D long-range order (i.e. spin-
waves) coexists with quantum Haldane-gap excitations in
these systems. This behavior has been intensively stud-
ied in recent years both experimentally [3,6], as well as
theoretically [3,4,7]. A first attempt to understand this
coexistence of classical and quantum orders was done by
considering a mean field approach [3,7] for the Ni-chains
interaction which proved to be very meaningful to under-
stand the basic phenomenon of coexistence. This type of
approach is nevertheless unable to provide a detailed de-
scription of the physics involved and one has to invoke the
use of a microscopic model which should include the main
interactions responsible for the system behavior. In [4] we
considered a spin model which describes both the interac-
tion within the S = 1 chains and the interaction between
the S = 1 chains and the s = 1

2 ions in between the chains
in the following way:

H = J
∑

ij

Si,2jSi+1,2j +Jc

∑

ij

Sz
i,2j(s

z
i,2j−1 +sz

i,2j+1) (1)

with J > 0 and Jc > 0, S denotes spin 1 and s denotes
spin 1/2. The index i runs along the chain direction and
j in the direction perpendicular to the chains. In Figure 1
we show a schematic representation of the lattice model.
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Fig. 1. Lattice picture of the model considered for R2BaNiO5

where the big (small) circles correspond to the S = 1 Ni spins
(s = 1

2
R spins) respectively. J and Jc are the Ni-Ni and the

Ni-R exchange couplings respectively.

We note that the coupling between S = 1 and s = 1/2
ions has been chosen Ising-like since neutron scattering
experiments [8] on these compounds show that the exci-
tations associated with the rare earths are dispersionless,
what indicates that the coupling between the Ni and R
sublattices must be extremely anisotropic and can there-
fore be approximated by an Ising-type term.

Even very simple, minimal models are hard to evaluate
and one has to either consider some limiting assumptions
in order to be able to solve the model analytically or make
use of numerical simulations, which may prove very accu-
rate for certain models and properties. In our case, we
consider the Quantum Monte Carlo (QMC) method.

The Hamiltonian (1) has been elaborated in such a
way that its physical properties are, by construction, in
qualitative agreement with a wide range of observations
gathered in the family of rare earth nickelates R2BaNiO5.
It has been shown [4] that quantitative agreement to ex-
perimental results for Nd2BaNiO5 can also be achieved by
selecting the appropriate value of Jc

J . A first instance of
this agreement is the ratio between the two basic energy
scales involved in the problem: i) The intrinsic gap ∆ of
the system of independent S = 1 chains (when Jc = 0) and
ii) the Néel temperature TN of the complete system when
the coupling Ni-Nd is switched on. In the well-studied
Y2BaNiO5 [9], the rare-earth Y3+ is non-magnetic and
no indication of 3D long-range order has been observed,
what strongly suggests that the system can be described
by well isolated S = 1 Ni2+ chains with a Haldane gap
∆ ∼ 127 K. In the magnetic Nd2BaNiO5 [10–12] the Néel
ordering is at TN = 49 K. Using these quantities we get
a ratio r = ∆

TN
= 2.59. Analogously, the gap value of an

independent S = 1 chain is given uniquely in terms of
the exchange constant ∆ = 0.410J . For Jc = 0.31J , we
find that the ordering temperature is TN = 0.163J which
gives r = 2.51 (a 3% difference with respect to the ex-
perimental value). Furthermore, for the same value of the
transverse coupling Jc = 0.31J , the staggered magneti-

zation for the Ni sublattice MNi(T → 0) = 0.79 which
corresponds to the value 1.6µB observed experimentally.
A further validation of this microscopic model was ob-
tained from the comparison of the calculated staggered
magnetization as a function of the temperature with the
experimental one. Actually, the staggered magnetizations
obtained from the QMC computations for both the Nickel
(MNi) and rare earth (MR) sublattices turn out to be in
very good quantitative agreement with the experimental
results for Nd2BaNiO5 [3,4] for Jc = 0.31J .

Here, based on the model proposed in our previous
work [4], we explore the antiferromagnetic/paramagnetic
transition of the whole family of rare-earth nickelates stud-
ied so far R2BaNiO5 R=Nd, Er, Pr and we propose an
effective model for the behavior of these materials in the
critical region.

We have organized the paper as follows. In Section 2
we describe the QMC algorithm used for our calculations
and the data analysis procedure. In Section 3 we present
the critical temperatures of the microscopic model evalu-
ated with QMC and we compare them with the prediction
given by the staggered mean field approach proposed by
Zheludev et al. [3,7]. An effective model for the critical
behavior is presented in Section 3 and the QMC result
for the spin-spin correlations in the paramagnetic phase
in Section 5.

2 Method and data analysis

To study numerically the Hamiltonian (1) we have used
the Loop Algorithm [13] (see also [14] for an extensive
review), a variant of the QMC method. This method be-
longs to the family of quantum cluster algorithms and
provides a very efficient prescription for the sampling pro-
cess of the configuration space. The key for the success
of these methods is the following. An accurate simula-
tion of a spin system requires to gather a large sample of
(nearly) statistically independent spin configurations in
which we measure the physical magnitudes of interest. A
simple procedure to collect a sample of spin configurations
is by performing local updates involving a few spins in
each Monte Carlo step. However, if the correlation length
is sizeable, the number of Monte Carlo steps necessary to
decorrelate two spin configurations (also called autocor-
relation time) is large. To avoid such slowing down, it is
necessary to perform global updates involving clusters of
spins with a size of the correlation length which: a) pre-
serve all the symmetries of the Hamiltonian, b) keep the
system near equilibrium. The Loop algorithm gives an ef-
ficient prescription for constructing such clusters. In this
way the autocorrelation time is of order one (i.e. a sin-
gle Monte Carlo step generates a new spin configuration
which is nearly independent from the previous one). This
is especially important since we are interested also in crit-
ical properties where the correlation length is of the size
of the system.

The fact that the coupling between S = 1 and s = 1/2
is of Ising type and not Heisenberg simplifies substantially
the implementation of the algorithm. On the other hand,
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Fig. 2. Histograms of the magnetization in the ordered phase
for both sublattices and Jc = 0.31 and T = 0.1J . The black
(grey) histogram corresponds to the S = 1 (s = 1/2) species. N
is the number of Monte Carlo measurements of the staggered
magnetization giving as a result Ms after thermalization. The
figure suggests that the model has two ground states.

the Hamiltonian (1) is not frustrated and does not show
the sign problem, therefore all Boltzmann weights appear-
ing in the evaluation of thermodynamic properties can be
taken positive after the conventional rotation around the
z-axis of all the spins in one of the two sublattices of the
S = 1 system. The temperatures of interest for compar-
ison with experiment are, as we will see, well inside the
scope of our QMC method.

The QMC simulations were performed on finite lattices
and we carried out a finite size scaling in order to be able
to compare with experiments and we considered periodic
boundary conditions SL+1,2j = S1,2j and Si,2j = Si,1.
In order to illustrate the finite size analysis, in Figure 2
we show the distribution of the staggered value of the
magnetization after 105 Monte Carlo steps.

Since the model has two ground states in the two sub-
lattices in the ordered phase related by the Z2 symmetry
(see Fig. 2), the staggered magnetization was computed
by taking the absolute value of the staggered component
of the spin operator in each Monte Carlo step in order to
avoid averaging between configurations around these two
ground states, and then using the relation

MNi = lim
L→∞

4
L2

∑

NMC

∑

ij

(−1)iSi,2j

MNd = lim
L→∞

4
L2

∑

NMC

∑

ij

(−1)isi,2j−1

where NMC = 105 is the number of Monte Carlo steps
after thermalization. In principle, we considered for this
extrapolation L×L lattices of size L=8, 16, 24, 32, 48, 64
spins, where L is the total number of spins including both
magnetic species. In Figure 3 we show the magnetization
in the rare-earth sublattice as a function of the inverse
size of the system for a model with Jc = 0.36J where
TN = 0.183J. We observe that for temperatures slightly
above TN , i.e. in the paramagnetic phase, very large lat-
tices are necessary to extrapolate the correct value of the
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Fig. 3. Magnetization in the rare-earth sublattice as a function
of the inverse size of the system for temperatures very close to
the Néel temperature TN ∼ 0.183 in units of J. The value
of the transverse coupling here is Jc = 0.36J . Note that the
T = 0.184 and T = 0.186 seem to be in the paramagnetic
phase which is only observable in very large lattices (MR → 0
as L → ∞).
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Fig. 4. Staggered magnetizations in both sublattices for dif-
ferent values of L. Far from the critical point, where the cor-
relation length is small, the extrapolation is straightforward.
For a given system size each point corresponds to a different
temperature in the ordered regime T < TN .

magnetization (zero in this case). However, the extrapola-
tion is an issue only at temperatures very close to the TN .
As we will see, for comparison with experiments we need
to compute the staggered magnetization at temperatures
clearly smaller than TN where extrapolation is straight-
forward. Actually, that is what we see in Figure 4 where
the relation between the staggered magnetizations in both
sublattices for different L values is shown. In this case the
staggered magnetization data may already have converged
with lattices as small as 32 × 32.

The Néel temperature was determined by using the
Binder parameter [15] g, which is the fourth cumulant of
the order parameter distribution.

g =
3
2

(
1 − 〈M4〉

〈M2〉
)

. (2)
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Fig. 5. Binder parameter g as a function of the temperature
for Jc = 0.36. The line intersection for different system sizes
signals the Néel temperature.

At TN this cumulant is independent of the size of the sys-
tem, apart from subdominant corrections to the critical
scaling. In Figure 5 we present the typical finite-size scal-
ing for the Binder parameter for Jc = 0.36J computed in
lattices of sizes L = 24, 32, 48, 64 spins where the intersec-
tion for different system sizes signals the Néel tempera-
ture. The data for L = 8, 16 show consistently significant
subdominant corrections and they were not included in
the computation of TN . We suspect that this is a con-
sequence of the complex structure of the higher energy
excitations, probably Haldane excitations in the S = 1
sector surviving in the vicinity of the Néel temperature,
what sets another lengthscale ξch ∼ 6 slightly smaller than
the correlation length of an independent S = 1 Heisenberg
chain. Actually, as we will see below, the energy scale as-
sociated to these excitations ( the “gap”) increases as we
increase Jc. Therefore only sizes L � ξch should enter the
finite size analysis [16].

3 Numerical simulations vs. mean field
approach in the critical regime

The critical properties deserve special attention because
the effective staggered field approach proposed by Zhe-
ludev et al. [3,7] – being a mean field approximation –
can break down in the vicinity of the critical region, i.e.
at the Néel temperature. The idea of the mean field is that
the behavior of the R2BaNiO5 compounds in the ordered
phase can be described in terms of a S = 1 chain of Ni
ions in a staggered magnetic field induced by the magnetic
rare earth ions:

MNi = M(αMR) (3)

where M(h) is the staggered magnetization of a S = 1
spin Heisenberg chain as a function of the external stag-
gered magnetic field h induced by the s = 1/2 ions and α
is the proportionality constant.

Inversely, the otherwise free spins s = 1
2 see the mean-

field produced by the neighboring S = 1 chains. The stag-
gered magnetization of the R lattice is then related to the
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Fig. 6. Functional dependence of the QMC results for MR vs.
MNi for various values of the coupling constant Jc. The solid
lines correspond to equation (4).
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Fig. 7. Effective coupling α between the two sublattices as
a function of the Ni-R coupling as obtained from the fits in
Figure 6. The solid line is a fit to the linear law α = 0.443Jc +
0.0034.

staggered magnetization of the Ni lattice by the expres-
sion.

MR = M0 tanh(αβMNi) (4)

where M0 is the effective moment of the rare earth ion
and β = 1/kBT .

We aim now to compare our QMC numerical results
with the predictions for TN of the staggered mean field ap-
proach. The coupling between the two sublattices in the
staggered mean field formalism is encoded in the constant
α instead of the microscopic coupling constant Jc. There-
fore the first step is to find a relation between both in the
antiferromagnetic phase. In Figure 6 we present the QMC
results for MR = f(JcβMNi) for various values of Jc. Note
that all curves fall on top of each other and, in fact, this
curve can be described by equation (4) where α must be
a linear function of Jc in the range of transverse couplings
studied as observed from our QMC results. Furthermore,
we have extracted the relation α = 0.0034 + 0.443Jc in
that range, which can be considered linear within our sta-
tistical error bars (see Fig. 7).

At this point it is legitimate to question the relation be-
tween a microscopic coupling Jc and a frankly phenomeno-
logical constant α especially at finite temperatures. Since
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Fig. 8. MNi vs. the value of the Jc for several values of Jc and
temperatures in units of J . In the inset MNi vs. the ‘effective’
field on the Ni-subsystem induced by MR Heff = 2JcMR [3]
for various T values. The squares correspond to the DMRG
results [17] at T = 0.

our QMC data are collected in the range of temperatures
Tmin < T < TN , where Tmin was the minimal energy that
we were able to simulate, it is necessary to study whether
there is a temperature dependence in α. In the main pic-
ture of Figure 8 we show the relation between MNi and
the value of the transversal coupling Jc at various tem-
peratures. Actually the data converge in the T = 0 limit
to a well defined curve MNi(Jc) which at low values of
Jc is the magnetization curve of the 1D S = 1 Heisenberg
model at T = 0 in a staggered magnetic field computed by
Yu et al. [17] using the Density Matrix Renormalization
Group (DMRG) method.

In the inset of Figure 8 we directly plot MNi vs. Heff

for various T values assuming that α is temperature in-
dependent. Now we have that even when the staggered
magnetization in the R lattice is not at saturation we find
that the rescaled data are superimposed to the magneti-
zation curve of the 1D S = 1 Heisenberg model at low val-
ues of Jc. This data collapse is a consequence of the large
value of the Haldane gap and the low temperatures con-
sidered. At higher values of Jc, the R sublattice remains
nearly saturated at the highest values of the T considered
(T = 0.07. J), therefore no difference is observed when the
rescaling is done. The results presented in Figure 8 also
confirm that the assumption of a temperature indepen-
dent α is valid in the range of temperatures considered
and that the mean field approach works very well if the
chains are weakly coupled to the R magnetic moments but
there are small deviations at higher values of Jc. Analyz-
ing the QMC results, the scale that separates the 1D from
the 2D regime is the Haldane gap Heff ∼ ∆1D ∼ 0.41J as
expected. We also note that for the smallest value of Jc,
Jc = 0.09J the Néel temperature is so small TN = 0.06J
that some of the points are still in the paramagnetic phase
MNi(T ) = 0.

In addition, to corroborate the relevance of the quan-
tum fluctuations in this system, we present in Figure 9
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0.3

0.4

0.5

MR

Fig. 9. Mean-field (solid line) compared to QMC results (open
circles). Note that a classical mean field theory approach fails
to correctly relate the staggered magnetization in any sublat-
tice. Here we show the best possible fit using the rare-earth
subsystem.

a comparison of a classical mean field model of the stag-
gered magnetization in the R sublattice i.e. MR as a func-
tion of βMR and independent of the magnetization of
the Ni sublattice (solid line) (Brillouin function) with the
QMC data obtained with the Hamiltonian (1) (open cir-
cles). We observe that there is a significant deviation be-
tween the data and the Brillouin function which can be
attributed to the effect of the quantum fluctuations on the
magnetization in the R sublattice which are contained in
the model equation (1) but not in a classical mean field
model.

A numerical solution of equations (3–4) in the whole
AFM phase (0 ≤ MR ≤ 0.5, 0 ≤ MNi ≤ 1.0) demands an
explicit analytic expression for the staggered magnetiza-
tion as a function of the external staggered magnetic field
in a S = 1 chain. For that purpose we took the DMRG
results of reference [17] and got the best possible fit. The
only conditions that we impose to our fitting function are:
i) It should have a smooth fitting behavior in the wide
range of values necessary to the numerical solution of
(3–4) ii) it should show linear behavior at low external
fields and iii) it should have asymptotic saturation at high
external fields. The explicit expression that we obtained
was:

M = A arctan(Bh) + C tanh(Dh) + Eh/(1 + Eh); (5)

where A = 0.177457, B = 9.58055, C = 0.336168,
D = 56.5282 and E = 0.386596. The equations (3–4) can
be solved now numerically confirming in general the excel-
lent agreement of QMC and the mean-field in the ordered
phase but there is qualitative disagreement in the TN(Jc)
relations as shown in Figure 10. In Figure 10 we com-
pare the Néel temperature as a function of Jc obtained
numerically (triangles) using the Binder parameter as ex-
plained in the previous section with the mean field solution
(dashed line). The most significant feature of the mean
field solution is its quadratic behavior in α and therefore
in Jc. This result suggests that the functional relation be-
tween α and Jc changes abruptly close to the critical point
and α ∼ √

Jc would be more appropriate in that regime.
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Fig. 10. Néel temperature as a function of the Ni-R coupling
Jc in units of J . The triangles are the result of our QMC simu-
lation in our model Hamiltonian. The dashed line is the mean
field result given by the equations (4–3) and the solid line is
the fit to a 2D anisotropic Ising model (see text).

We shall investigate this discrepancy in more detail in the
next section.

4 Effective description of the critical behavior

Our purpose here is to reproduce the relation TN (Jc) (see
Fig. 10) using a model that includes the critical fluctua-
tions that seem to be missing in the mean field approach.

To elaborate such a model let us consider the following
observations:

i) The magnetic moments in the rare earth commute
with the total Hamiltonian

[sz
i,2j±1, H ] = 0 (6)

which implies that MR is a good quantum number of the
Hamiltonian irrespective of the value of Jc.

ii) At finite temperatures the model has two ground
states related by the Z2 symmetry in both sublattices as
shown in the histograms of the magnetization in the or-
dered region (see Fig. 2) where the distribution of the
order parameter is presented after thermalization.)

iii) The spin rotational invariance has been broken by
the Ising character of Jc. As predicted by Haldane [5]
and elaborated on microscopical grounds by Gomez-
Santos [18], the low-energy sector of the XXZ S = 1
Heisenberg chain can be mapped onto a 2D Ising model.
Actually, the longitudinal spin-spin correlation function
of a Haldane chain is identical to the one of the 2D Ising
model in the paramagnetic phase, including the power-law
correction to the scaling. The previous relation is an ex-
ample of mapping a quantum model in dimension d to a
classical model in d+z dimensions, where z = 1 for this
case. The length of the imaginary time dimension is de-
termined by the inverse temperature β.

Let us consider then a system of Ising planes coupled
by the intercalated moments of the rare-earth. In the ma-
terials of interest we have always TN < ∆. In the para-
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Fig. 11. Spin-spin correlation function (z-component) in the
Ni subsystem and along the chains (Jc = 0.18) in a lattice of
80 × 80 sites

magnetic phase TN < T < ∆ we expect that the autocor-
relation time ξT in the imaginary direction to be smaller
than β and the system behaves effectively as a three di-
mensional Ising model. As the temperature is reduced, a
crossover takes place when ξT becomes of the order of
β. Beyond that point the system belongs to the 2D Ising
model universality class with different coupling constants
in the two spatial dimensions.

The simplest effective model (i.e. valid in the vicinity
of the critical point) and compatible with the arguments
above is an anisotropic 2D Ising model whose critical tem-
perature is given by the Kramers-Wannier expression [19]:

sinh(2J‖/TN) sinh(2J⊥/TN) = 1 (7)

where J‖ = 2.35 and J⊥ = 0.022J2
c are the effective cou-

plings of the model. In Figure 10 we show the agreement
of this effective model (solid line) with the QMC data ob-
tained for equation (1) (triangles).

5 The paramagnetic phase

For completion, we present in this section the spatial spin-
spin correlations in the paramagnetic phase. At T = TN

the spin-spin correlation function decays algebraically and
therefore the correlation length is infinite. As the temper-
ature increases, the correlation length decreases. If the
nominal gap ∆ of the independent S = 1 is large enough,
the properties of the independent S = 1 should become
visible in the paramagnetic phase. The question we are
interested in is whether this crossover is observable in the
value of the correlation length.

In Figures 11 and 12 we present the correlation func-
tions of the z-component of the spin operators in the
Ni and R sublattice respectively. We observe that, even
though the R-R correlations are two orders of magnitude
smaller than the Ni-Ni correlations, there are finite corre-
lations between the s = 1/2 spins mediated by the chains.
We recall that the model doesn’t couple the s = 1/2 spins
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Fig. 12. Same magnitudes and parameters as in Figure 11 for
the R subsystem. Note the change in scale.

directly. The immediate question is: which is the induced
correlation length between the rare earth magnetic mo-
ments?

Following White and Huse [20], we calculated the cor-
relation length ξ for both sublattices in a 64×64 spins
lattice by fitting the z-component of the spin-spin corre-
lation function to the law:

|〈Sz
0Sz

l 〉| = A exp(
−l

ξ
)l−η (8)

where A and η are fitting parameters. In the vicinity but
not too close to TN we find a fit of the correlation length
temperature to a power law in both sublattices. We took
values in a range ξ ∼ 5 − 17 that can be accurately com-
puted with the procedure described above. The best fit is
ξ−1 = K(T−TN)

1
2 where K is the only free parameter [4].

Such behavior is the one expected for a Ginzburg-Landau
like description above the critical point confirming that a
mean field description is again valid as we depart from
the critical point from above. Besides, we note that for
T � TN , the correlation length in the Ni subsystem ap-
proaches the correlation length of a single chain.

The fitting parameter η shows a differentiated tem-
perature dependence in both sublattices i.e. η = 0 for the
correlation function equation (8) in the R-sublattice while
in the Ni sublattice η approaches the value 0.5 as the tem-
perature is reduced in the paramagnetic phase.

6 Conclusions

In conclusion, we have provided a detailed analysis of
the antiferro-/paramagnetic transition of the R2BaNiO5

mixed-spin quantum antiferromagnets based on QMC
simulations of a lattice model of interacting spin-1 and
spin-1/2 entities. We give an extensive description of the
numerical calculations, data analysis and comparison of

our results with experimental observations is very good.
These calculations go beyond previous mean field ap-
proaches and retain the main features of the behavior of
the system in the critical region. We propose an effective
2D anisotropic Ising model to explain the behavior of the
Néel temperature as a function of the coupling between
the Nickel and the rare earth sublattices.

It is a pleasure for us to acknowledge discussions with C. Gros,
S. Moukouri, H. Rieger and A. Zheludev.
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